Genome Evolution in the Primary Endosymbiont of Whiteflies Sheds Light on Their Divergence
نویسندگان
چکیده
Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont.
منابع مشابه
Small but Powerful, the Primary Endosymbiont of Moss Bugs, Candidatus Evansia muelleri, Holds a Reduced Genome with Large Biosynthetic Capabilities
Moss bugs (Coleorrhyncha: Peloridiidae) are members of the order Hemiptera, and like many hemipterans, they have symbiotic associations with intracellular bacteria to fulfill nutritional requirements resulting from their unbalanced diet. The primary endosymbiont of the moss bugs, Candidatus Evansia muelleri, is phylogenetically related to Candidatus Carsonella ruddii and Candidatus Portiera ale...
متن کاملThe Evolution of Genomic Instability in the Obligate Endosymbionts of Whiteflies
Many insects depend on ancient associations with intracellular bacteria to perform essential metabolic functions. These endosymbionts exhibit striking examples of convergence in genome architecture, including a high degree of structural stability that is not typical of their free-living counterparts. However, the recently sequenced genome of the obligate whitefly endosymbiont Portiera revealed ...
متن کاملGenome sequences of the primary endosymbiont "Candidatus Portiera aleyrodidarum" in the whitefly Bemisia tabaci B and Q biotypes.
"Candidatus Portiera aleyrodidarum" is the obligate primary endosymbiotic bacterium of whiteflies, including the sweet potato whitefly Bemisia tabaci, and provides essential nutrients to its host. Here we report two complete genome sequences of this bacterium from the B and Q biotypes of B. tabaci.
متن کاملSequence Context of Indel Mutations and Their Effect on Protein Evolution in a Bacterial Endosymbiont
Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochma...
متن کاملNature lessons: The whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics.
Reductive genome evolution is a universal phenomenon observed in endosymbiotic bacteria in insects. As the genome reduces its size and irreversibly losses coding genes, the functionalities of the cell system, including the energetics processes, are more restricted. Several energetic pathways can also be lost. How do these reduced metabolic networks sustain the energy needs of the system? Among ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015